Шолле Ф.

Глубокое обучение на Python

Giv mig besked når bogen er tilgængelig
Denne bog er ikke tilgængelig i streaming pt. men du kan uploade din egen epub- eller fb2-fil og læse den sammen med dine andre bøger på Bookmate. Hvordan overfører jeg en bog?
Глубокое обучение — Deep learning — это набор алгоритмов машинного обучения, которые моделируют высокоуровневые абстракции в данных, используя архитектуры, состоящие из множества нелинейных преобразований. Согласитесь, эта фраза звучит угрожающе. Но всё не так страшно, если о глубоком обучении рассказывает Франсуа Шолле, который создал Keras — самую мощную библиотеку для работы с нейронными сетями. Познакомьтесь с глубоким обучением на практических примерах из самых разнообразных областей. Книга делится на две части, в первой даны теоретические основы, вторая посвящена решению конкретных задач. Это позволит вам не только разобраться в основах DL, но и научиться использовать новые возможности на практике. «Обучение — это путешествие длинной в жизнь, особенно в области искусственного интеллекта, где неизвестностей гораздо больше, чем определенности.» Франсуа Шолле
Denne bog er ikke tilgængelig i øjeblikket
743 trykte sider
Har du allerede læst den? Hvad synes du om den?
👍👎

Vurderinger

  • Андрейhar delt en vurderingfor 5 år siden
    👍Værd at læse
    💡Lærerig
    🎯Læseværdig

Citater

  • Kirill Kruglikovhar citeretfor 4 år siden
    Этот вопрос открыл двери в новую парадигму программирования. В классическом программировании, в парадигме символического ИИ, люди вводят правила (программу) и данные для обработки в соответствии с этими правилами и получают ответы (рис. 1.2). В машинном обучении люди вводят данные и ответы, соответствующие этим данным, а на выходе получают правила. Эти правила затем можно применить к новым данным для получения оригинальных ответов.
  • Андрейhar citeretfor 6 år siden
    Вообще говоря, чем меньше обучающих данных, тем скорее наступит переобучение, а использование маленькой сети — один из способов борьбы с ним.
  • Андрейhar citeretfor 6 år siden
    С целочисленными метками следует использовать функцию sparse_categorical_crossentropy:
    model.compile(optimizer='rmsprop',
    loss='sparse_categorical_crossentropy',
    metrics=['acc'])

På boghylderne

fb2epub
Træk og slip dine filer (ikke mere end 5 ad gangen)