en
Sebastian Raschka

Python Machine Learning – Third Edition: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition

Giv mig besked når bogen er tilgængelig
Denne bog er ikke tilgængelig i streaming pt. men du kan uploade din egen epub- eller fb2-fil og læse den sammen med dine andre bøger på Bookmate. Hvordan overfører jeg en bog?
Applied machine learning with a solid foundation in theory. Revised and expanded for TensorFlow 2, GANs, and reinforcement learning.
Key FeaturesThird edition of the bestselling, widely acclaimed Python machine learning bookClear and intuitive explanations take you deep into the theory and practice of Python machine learningFully updated and expanded to cover TensorFlow 2, Generative Adversarial Network models, reinforcement learning, and best practicesBook DescriptionPython Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems.
Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself.
Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents.
This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.
What you will learnMaster the frameworks, models, and techniques that enable machines to 'learn' from dataUse scikit-learn for machine learning and TensorFlow for deep learningApply machine learning to image classification, sentiment analysis, intelligent web applications, and moreBuild and train neural networks, GANs, and other modelsDiscover best practices for evaluating and tuning modelsPredict continuous target outcomes using regression analysisDig deeper into textual and social media data using sentiment analysisWho This Book Is ForIf you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for anyone who wants to teach computers how to learn from data.
Sebastian Raschka is an Assistant Professor of Statistics at the University of Wisconsin-Madison focusing on machine learning and deep learning research. Some of his recent research methods have been applied to solving problems in the field of biometrics for imparting privacy to face images. Other research focus areas include the development of methods related to model evaluation in machine learning, deep learning for ordinal targets, and applications of machine learning to computational biology. Vahid Mirjalili obtained his Ph.D. in mechanical engineering working on novel methods for large-scale, computational simulations of molecular structures. Currently, he is focusing his research efforts on applications of machine learning in various computer vision projects at the Department of Computer Science and Engineering at Michigan State University. He recently joined 3M Company as a research scientist, where he uses his expertise and applies state-of-the-art machine learning and deep learning techniques to solve real-world problems in various applications to make life better.
Denne bog er ikke tilgængelig i øjeblikket
2.356 trykte sider
Oprindeligt udgivet
2019
Udgivelsesår
2019
Har du allerede læst den? Hvad synes du om den?
👍👎
fb2epub
Træk og slip dine filer (ikke mere end 5 ad gangen)